Identification of Early Replicating Fragile Sites that Contribute to Genome Instability
نویسندگان
چکیده
DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.
منابع مشابه
Early replication fragile sites: where replication-transcription collisions cause genetic instability.
Although it is known that replication stress causes genetic instability, the underlying mechanisms are not yet fully understood. A new study by Barlow et al (2013) used an elegant genome-wide chromatin immunoprecipitation approach to reveal that DNA lesions induced by replication stress occur predominantly in early replicating and actively transcribed gene clusters. These ‘early replication fra...
متن کاملGenome-wide reorganization of histone H2AX toward particular fragile sites on cell activation
γH2AX formation by phosphorylation of the histone variant H2AX is the key process in the repair of DNA lesions including those arising at fragile sites under replication stress. Here we demonstrate that H2AX is dynamically reorganized to preoccupy γH2AX hotspots on increased replication stress by activated cell proliferation and that H2AX is enriched in aphidicolin-induced replisome stalling si...
متن کاملCommon fragile sites.
Aphidicolin-induced common fragile sites are site-specific gaps or breaks seen on metaphase chromosomes after partial inhibition of DNA synthesis. These fragile sites were first recognized during the early studies of the fragile X syndrome and are induced by the same conditions of folate or thymidylate stress used to induce the fragile X site. Common fragile sites are normally stable in culture...
متن کاملCommon Fragile Sites: Genomic Hotspots of DNA Damage and Carcinogenesis
Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs. However, des...
متن کاملInitiation of Genome Instability and Preneoplastic Processes through Loss of Fhit Expression
Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 152 شماره
صفحات -
تاریخ انتشار 2013